If it's not what You are looking for type in the equation solver your own equation and let us solve it.
625x^2-1050x+169=0
a = 625; b = -1050; c = +169;
Δ = b2-4ac
Δ = -10502-4·625·169
Δ = 680000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{680000}=\sqrt{40000*17}=\sqrt{40000}*\sqrt{17}=200\sqrt{17}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1050)-200\sqrt{17}}{2*625}=\frac{1050-200\sqrt{17}}{1250} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1050)+200\sqrt{17}}{2*625}=\frac{1050+200\sqrt{17}}{1250} $
| 6x-3+2x=8x7-10 | | 36=17n | | 3x+15=x+25+x+20 | | Y=-1/4x^+7 | | Y=-1t4 | | F(x)=9x^+7x+8 | | -5(2a+7)=-35-8a | | 2x(x+1.5)=-1. | | 1.2x=9.1=14.152 | | y2-10y+23=0 | | 5(x+4)=7(x-6) | | 3/7x-2/7x+13=62 | | 8(-2n-4)=-4(7n-7)+7n | | b2-9=0 | | 0.20=x^2/85-x | | 165-22x=17x | | -8r+4r+18r+-2r=-8 | | 2x+6/4x-4=0 | | k/13=-7 | | 91=-5k+7(2k=4) | | 13+7g=83 | | 5j-(-3)=73 | | 8-n=-4n+2n | | Z=x-x | | 3^x=512 | | 6x+16=5x+25 | | 5-3x=33-5x | | 80°=(4x-5)° | | 30-4x=16+3x | | X=185+1.375x | | 35t+70-t=385 | | -3(m-85)=3 |